Il volume fornisce un’introduzione all’uso dei big data e delle tecniche di analisi, tra cui il machine learning, per la stima e l’impiego di indicatori di sentiment nell’asset management. Particolare enfasi viene data alla distinzione tra le molteplici opportunità offerte da fonti di dati alternativi nella teoria e nella pratica della gestione di portafoglio e alla necessità di incorporare il sentiment nei processi decisionali tipici dell’asset management.
Oltre a una trattazione teorica, che spazia dai principi della finanza comportamentale alle moderne metodologie del machine learning, il testo è arricchito da casi di studio derivati dalla pratica aziendale su come il sentiment possa influenzare le strategie di portafoglio. Particolare attenzione è riservata agli indicatori di sentiment inferibili dai social media e alle tecniche di analisi testuale.
Le varie tecniche di analisi del sentiment sono applicate alle diverse tipologie di portafoglio e approcci di gestione, distinguendo tra mercati azionari, obbligazionari, delle commodity e valutari. Si esamina, inoltre, come il sentiment possa essere sfruttato per prevedere eventi ricorrenti, ivi comprese le crisi finanziarie.